Introduction
Dyspnea is a troubling symptom for many patients and those involved in their care. It is common in many advanced diseases and is frequently experienced at the end of life. The American Thoracic Society describes dyspnea as subjective breathing discomfort and sensations in varying intensities that a patient can distinctly qualify. Furthermore, dyspnea originates from multiple physiological, psychological, social, and environmental circumstances, causing secondary physiological and behavioral responses.[1]
Etiology
Register For Free And Read The Full Article
- Search engine and full access to all medical articles
- 10 free questions in your specialty
- Free CME/CE Activities
- Free daily question in your email
- Save favorite articles to your dashboard
- Emails offering discounts
Learn more about a Subscription to StatPearls Point-of-Care
Etiology
Dyspnea results from a complex interplay of multiple factors, and its treatment requires careful evaluation and an individualized approach to management. Generally speaking, the sensation of dyspnea arises from the awareness of a respiratory supply-and-demand mismatch. Such a mismatch can result from the perception of increased demand, decreased capacity, or a combination of both.
Epidemiology
In advanced disease states, dyspnea is prevalent and often severe. It is most commonly experienced in advanced cancer, heart failure, and chronic lung disease. These 3 disease categories account for over 50% of deaths in the United States. In cancer patients, the prevalence of dyspnea is 50% to 70%, with a prevalence of up to 90% in patients experiencing lung cancer. Also, 90% of patients with severe lung disease and 50% of heart failure patients experience significant dyspnea. It is also a common symptom complex experienced by patients with end-stage renal disease, dementia, advanced age, and HIV. Additionally, the experience of dyspnea is often frequent, severe, and distressing.
Symptoms intensity and prevalence increase in the last six months of life. In fact, during the last 3 days of life, dyspnea is present at some point in 90% of patients.
Pathophysiology
Respiratory control in normal physiologic situations involves incoming messaging from various peripheral receptors: proprioceptors and mechanoreceptors in the musculature, joints of the chest wall; pulmonary stretch receptors; receptors in the airways; and trigeminal skin receptors. These signals combine with the signals from chemoreceptors in the aortic and carotid bodies and are then transmitted centrally to the pons and medulla via the vagus, glossopharyngeal, spinal, and phrenic nerves.[2]
Voluntary input from the motor cortex via the limbic system contributes protective and emotional influences to motor control of breathing. Outgoing messaging travels back to the motor units via the vagus and other nerves and results in adjustments to the depth and rate of respiration.
Generally speaking, the sensation of dyspnea arises from the awareness of a respiratory supply-and-demand mismatch. Such a mismatch can result from the perception of increased demand, decreased capacity, or a combination of both.[3][4]
There are 2 theories to explain how supply-and-demand imbalances generate the sensation of dyspnea. “Efferent-reafferent dissociation” occurs when the respiratory center sends a motor command in response to the peripheral messages received. In certain states, the respiratory muscles are unable to match the motor demands. As a result, additional feedback from the periphery communicates to the respiratory center this discrepancy between the output command sent and the subsequent inadequate response it generated. The severity of the experience of dyspnea is thought to correlate to the degree of this discrepancy.
The second theory involves central corollary discharges. Copies of the descending motor commands sent from the central respiratory motor centers to the periphery are simultaneously sent to the sensory/perceptual areas of the brain. These corollary discharges, which serve to keep the sensory areas informed of the motor commands and impart a conscious awareness of respiratory effort, are thought to contribute to the sensation of dyspnea as well.
Inputs from the cortical and limbic system, much like other homeostatic stimuli like hunger, thirst, and pain, contribute to the subjective intensity and unpleasantness of the overall experience.
Receptors in the lung parenchyma, when undergoing abnormal stimulation, produce sensations of chest tightness. This perception of chest tightness in bronchoconstriction is stimulated through pulmonary afferents rather than the increased work requirements.
A sense of air hunger from exercise, hypoxia, or hypercapnia can result from chemoreceptor signaling when mismatched with the motor drive. However, signaling of the pulmonary vagal stretch and chest wall receptors can inhibit (and therefore reduce) this sense of air hunger.
Specific pathologic and age-related changes contribute to pulmonary dysfunction and the experience of dyspnea. Respiratory muscles weaken, lung elasticity decreases, lung tissue shrinks, and the chest wall stiffens, all of which can result in impairment of efficient gas exchange.
Anxiety caused by the experience of dyspnea can lead to increased respiratory and heart rate, worsening dyspnea.
History and Physical
History and physical exam start with an exploration of the underlying illnesses. When exploring dyspnea, relevant dimensions of the symptom include occurrence, distress, intensity, frequency, duration, whether it is constant or episodic, and meaning.
The biopsychosocial model of “total dyspnea,” modeled after the concept of “total pain,” recognizes that many aspects of the patient’s situation affect the experience of their dyspnea. Physical aspects, psychological aspects such as anxiety, levels of coping, spiritual aspects, such as the degree of acceptance, meaning, suffering, and social aspects, including relationships, family experience, and financial situations, all contribute to the experience.[5]
Physical exam findings can vary based on the situation and underlying illness. Findings can correlate with the underlying illness, reveal new abnormalities responsible for acute or changing dyspnea, or may even be normal in patients that are nonetheless dyspneic.
A large part of the exam focuses on the respiratory system. While inspecting the patient, any abnormalities in the respiratory rate should be noted. There may be visible indications of increased respiratory effort, such as retractions, accessory muscle use, or paradoxical abdominal breathing.
Auscultation can reveal a variety of findings. The presence of grunting, stridor, or voice changes should be noted. Lung fields should be auscultated, listening for prolonged expiratory phase, wheezing, rhonchi, or crackles. The overall degree of air excursion should be noted.
Physical exam findings outside the respiratory system will also contribute to identifying the underlying causes of dyspnea. For example, the presence of peripheral edema, jugular venous pulse, heart rate, and rhythm, the distance of heart sounds, tracheal positioning, hepatojugular reflux, abdominal distention, or pallor all contribute valuable information to the physical exam for dyspnea.
Furthermore, psychological, social, and spiritual factors can contribute to the overall burden of dyspnea and can be explored as indicated.
Evaluation
In evaluating dyspnea, a thorough history and physical exam are warranted, with special attention to underlying and possibly reversible causes. Additional laboratory and radiologic evaluation can be useful in diagnosing and in guiding treatment. Pulse oximetry can provide information about oxygen saturation. Arterial blood gases can reveal the presence of acid-base disturbances, hypoxia, or abnormal partial pressures of carbon dioxide. Hemoglobin count can identify anemia. An abnormally high or low leukocyte count or an abnormal leukocyte differential may be suggestive of an infection.
Radiographic imaging, with such modalities as x-ray and computed tomography, can provide a great deal of information regarding the lung parenchyma, pleural space, pulmonary vasculature, and larger airway structures, as well as the bony elements of the thorax. Combined, the laboratory and radiographic information may help identify an underlying etiology of the dyspnea and, as such, can help guide disease-modifying and symptomatic treatment. However, as dyspnea is a subjective, multifactorial symptom, it may occur in the absence of any identifiable laboratory or radiographic abnormalities.
Treatment / Management
The management of dyspnea proceeds via one or more of several broad mechanisms. Decreasing respiratory impedance and reducing hypoxemia are treatments aimed at any underlying pulmonary pathophysiology. Other interventions can target reducing the respiratory drive and reducing the resistive load on the respiratory muscles. Altering the central perception of dyspnea at the level of the sensory cortex or brainstem can decrease the intensity and discomfort. Addressing any affective components of dyspnea, such as anxiety, is an important component of treatment.
There are pharmacologic and non-pharmacologic treatments. Pharmacologic interventions can be thought of as disease-modifying when they treat the underlying disease that triggered the dyspnea. A symptom-based approach aims to reduce awareness of the intensity and discomfort of dyspnea.[6][7](B3)
Disease-Modifying Medications
Diuretics treat fluid overload in congestive heart failure, renal failure, and hepatic failure.
Beta-adrenergic agonists and muscarinic antagonists can reduce symptoms in advanced stages of chronic obstructive pulmonary disease.[8]
Oxygen administration can improve dyspnea but only in patients with hypoxemia.
Symptom-Based Medications
Opioids are considered a mainstay of treatment for dyspnea. The evidence is most robust regarding the use of immediate-release morphine. Opioids, via the mu-opioid receptors, reduce air hunger discomfort but less the discomfort of the increased effort to breathe. It is theorized that morphine decreases spontaneous respiratory drive and the sensitivity of the central breathing center. Opioids may also affect the cortical processing of dyspnea as they do in the setting of pain.[9][10]
The use of benzodiazepines reduces the anxiety often associated with dyspnea, but not the sensation of dyspnea.[11](A1)
Nebulized furosemide has some evidence of efficacy in patients with chronic obstructive pulmonary disease (COPD). It is thought to activate pulmonary mechanoreceptors. In animal models, inhaled furosemide increases the activity of pulmonary vagal stretch receptors.[12]
Nebulized lidocaine or morphine has no evidence of benefit.
Dexamethasone may be useful to improve dyspnea in lung cancer patients or those with COPD.[13](B3)
Mirtazapine has been shown to have some beneficial effects for patients with chronic dyspnea.[14](B2)
Non-Pharmacologic Therapies
Non-invasive ventilation may provide symptomatic improvement in those with increased work of breathing but is less helpful in situations of VQ mismatch or alveolar-arterial diffusion defects.
Cold air and the use of fans blowing air on the face can significantly improve dyspnea. Sensory afferents may mediate this effect in the second and third branches of the trigeminal nerve. Supplemental oxygen has only been shown to be useful in patients with hypoxia.[9][15](A1)
Pulmonary rehabilitation has proven beneficial, with exercise being the most beneficial component.
Cognitive-behavioral therapy and anxiety-reduction techniques can address affective components.[16](B3)
Caregiver education emphasizes patient positioning, a personal crisis plan, and the use of pharmacologic and non-pharmacologic options that may help reduce anxiety and provide an increased sense of control. Additionally, caregiver participation in dedicated support groups may help with coping.
Differential Diagnosis
- Acute coronary syndrome
- Acutely decompensated congestive heart failure
- Acute respiratory failure
- Cardiomyopathy
- Exogenous allergic alveolitis
- Hemorrhage
- High output failure
- Lung contusion
- Lung cancer
- Pulmonary edema
- Pneumonia
- Pleural effusion
Prognosis
The prognosis of dyspnea in palliative care is challenging since the person is close to passing, and the goal is to provide symptomatic relief and increase the quality of life for the remaining time they have.
Complications
- Opioid adverse effects (e.g., respiratory depression)[17]
- Surgical complications if those interventions are attempted
- Significantly impaired quality of life for the patient if there is no resolution
Deterrence and Patient Education
Terminal patients and their families need to understand that interventions for dyspnea are merely palliative and not curative in most cases and only apply to the dyspnea or its cause, and not their overall terminal condition.
Enhancing Healthcare Team Outcomes
Dyspnea results from an interplay of multiple factors in a variety of patients with advanced illness and at the end of life. It has a large impact on the quality of life of patients and caregivers. Assessment is typically focused on the underlying disease process, as well as the social, psychological, and spiritual factors that may be contributing. The use of non-pharmacologic treatments should be the first step in treating patients. Such interventions include positioning, pacing, and the use of cool air and fans. Oxygen is not more useful than air in patients with normal oxygen levels. Pharmacologic treatment includes optimization of treatment of the underlying disease and opioids for symptom-based treatment. Pharmacologic strategies predominate in care at the end of life, and dyspnea is a common reason for the use of palliative sedation at this stage.
The palliative team, including nurses, should be involved in caregiver education and provide comfort measures.
References
Kamal AH, Maguire JM, Wheeler JL, Currow DC, Abernethy AP. Dyspnea review for the palliative care professional: assessment, burdens, and etiologies. Journal of palliative medicine. 2011 Oct:14(10):1167-72. doi: 10.1089/jpm.2011.0109. Epub 2011 Sep 6 [PubMed PMID: 21895451]
O'Donnell DE, Elbehairy AF, Berton DC, Domnik NJ, Neder JA. Advances in the Evaluation of Respiratory Pathophysiology during Exercise in Chronic Lung Diseases. Frontiers in physiology. 2017:8():82. doi: 10.3389/fphys.2017.00082. Epub 2017 Feb 22 [PubMed PMID: 28275353]
Level 3 (low-level) evidenceCurrow DC, Abernethy AP, Allcroft P, Banzett RB, Bausewein C, Booth S, Carrieri-Kohlman V, Davidson P, Disler R, Donesky D, Dudgeon D, Ekstrom M, Farquhar M, Higginson I, Janssen D, Jensen D, Jolley C, Krajnik M, Laveneziana P, McDonald C, Maddocks M, Morelot-Panzini C, Moxham J, Mularski RA, Noble S, O'Donnell D, Parshall MB, Pattinson K, Phillips J, Ross J, Schwartzstein RM, Similowski T, Simon ST, Smith T, Wells A, Yates P, Yorke J, Johnson MJ. The need to research refractory breathlessness. The European respiratory journal. 2016 Jan:47(1):342-3. doi: 10.1183/13993003.00653-2015. Epub [PubMed PMID: 26721965]
Scano G, Innocenti-Bruni G, Stendardi L. Do obstructive and restrictive lung diseases share common underlying mechanisms of breathlessness? Respiratory medicine. 2010 Jul:104(7):925-33. doi: 10.1016/j.rmed.2010.02.019. Epub 2010 Mar 19 [PubMed PMID: 20303724]
Javadzadeh S, Chowienczyk S, Booth S, Farquhar M. Comparison of respiratory health-related quality of life in patients with intractable breathlessness due to advanced cancer or advanced COPD. BMJ supportive & palliative care. 2016 Mar:6(1):105-8. doi: 10.1136/bmjspcare-2015-000949. Epub 2015 Dec 18 [PubMed PMID: 26685116]
Level 2 (mid-level) evidenceGysels M, Reilly CC, Jolley CJ, Pannell C, Spoorendonk F, Moxham J, Bausewein C, Higginson IJ. Dignity Through Integrated Symptom Management: Lessons From the Breathlessness Support Service. Journal of pain and symptom management. 2016 Oct:52(4):515-524. doi: 10.1016/j.jpainsymman.2016.04.010. Epub 2016 Sep 17 [PubMed PMID: 27650009]
Reilly CC, Bausewein C, Pannell C, Moxham J, Jolley CJ, Higginson IJ. Patients' experiences of a new integrated breathlessness support service for patients with refractory breathlessness: Results of a postal survey. Palliative medicine. 2016 Mar:30(3):313-22. doi: 10.1177/0269216315600103. Epub 2015 Aug 26 [PubMed PMID: 26311570]
Level 3 (low-level) evidenceLilly EJ, Senderovich H. Palliative care in chronic obstructive pulmonary disease. Journal of critical care. 2016 Oct:35():150-4. doi: 10.1016/j.jcrc.2016.05.019. Epub 2016 May 27 [PubMed PMID: 27481751]
Clemens KE, Klaschik E. Dyspnoea associated with anxiety--symptomatic therapy with opioids in combination with lorazepam and its effect on ventilation in palliative care patients. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer. 2011 Dec:19(12):2027-33. doi: 10.1007/s00520-010-1058-8. Epub 2010 Dec 14 [PubMed PMID: 21153667]
Kwon JH, Kim MJ, Bruera S, Park M, Bruera E, Hui D. Off-Label Medication Use in the Inpatient Palliative Care Unit. Journal of pain and symptom management. 2017 Jul:54(1):46-54. doi: 10.1016/j.jpainsymman.2017.03.014. Epub 2017 May 4 [PubMed PMID: 28479415]
Simon ST, Higginson IJ, Booth S, Harding R, Weingärtner V, Bausewein C. Benzodiazepines for the relief of breathlessness in advanced malignant and non-malignant diseases in adults. The Cochrane database of systematic reviews. 2016 Oct 20:10(10):CD007354 [PubMed PMID: 27764523]
Level 1 (high-level) evidenceBarbetta C, Currow DC, Johnson MJ. Non-opioid medications for the relief of chronic breathlessness: current evidence. Expert review of respiratory medicine. 2017 Apr:11(4):333-341. doi: 10.1080/17476348.2017.1305896. Epub 2017 Mar 17 [PubMed PMID: 28282499]
Hui D, Kilgore K, Frisbee-Hume S, Park M, Tsao A, Delgado Guay M, Lu C, William W Jr, Pisters K, Eapen G, Fossella F, Amin S, Bruera E. Dexamethasone for Dyspnea in Cancer Patients: A Pilot Double-Blind, Randomized, Controlled Trial. Journal of pain and symptom management. 2016 Jul:52(1):8-16.e1. doi: 10.1016/j.jpainsymman.2015.10.023. Epub 2016 Jun 18 [PubMed PMID: 27330023]
Level 3 (low-level) evidenceLovell N, Bajwah S, Maddocks M, Wilcock A, Higginson IJ. Use of mirtazapine in patients with chronic breathlessness: A case series. Palliative medicine. 2018 Oct:32(9):1518-1521. doi: 10.1177/0269216318787450. Epub 2018 Jul 20 [PubMed PMID: 30028237]
Level 2 (mid-level) evidenceKako J, Morita T, Yamaguchi T, Kobayashi M, Sekimoto A, Kinoshita H, Ogawa A, Zenda S, Uchitomi Y, Inoguchi H, Matsushima E. Fan Therapy Is Effective in Relieving Dyspnea in Patients With Terminally Ill Cancer: A Parallel-Arm, Randomized Controlled Trial. Journal of pain and symptom management. 2018 Oct:56(4):493-500. doi: 10.1016/j.jpainsymman.2018.07.001. Epub 2018 Aug 6 [PubMed PMID: 30009968]
Level 1 (high-level) evidencevon Blanckenburg P, Leppin N. Psychological interventions in palliative care. Current opinion in psychiatry. 2018 Sep:31(5):389-395. doi: 10.1097/YCO.0000000000000441. Epub [PubMed PMID: 29985177]
Level 3 (low-level) evidenceKamal AH, Maguire JM, Wheeler JL, Currow DC, Abernethy AP. Dyspnea review for the palliative care professional: treatment goals and therapeutic options. Journal of palliative medicine. 2012 Jan:15(1):106-14. doi: 10.1089/jpm.2011.0110. Epub [PubMed PMID: 22268406]