Introduction
Pulmonary artery catheterization (PAC) is a procedure in which an intravascular catheter is inserted through a central vein (femoral, jugular, antecubital or brachial) to connect to the right side of the heart and advance towards the pulmonary artery. This diagnostic procedure can be utilized to assess right sided cardiac chamber filling pressures, estimation of cardiac output, intracardiac shunt evaluation, valvular studies, and vascular resistance. Despite the decrease in the use of pulmonary artery catheterization for evaluation and management of critically ill patients, it still remains an excellent tool for assessment of patients with pulmonary hypertension, cardiogenic shock, and unexplained dyspnea[1].
Anatomy and Physiology
Register For Free And Read The Full Article
- Search engine and full access to all medical articles
- 10 free questions in your specialty
- Free CME/CE Activities
- Free daily question in your email
- Save favorite articles to your dashboard
- Emails offering discounts
Learn more about a Subscription to StatPearls Point-of-Care
Anatomy and Physiology
Insertion of the catheter from one of the main central veins (subclavian, internal jugular, femoral) traverses into the superior or inferior vena cava and reach the right atrium. From the right atrium through the tricuspid valve, the catheter reaches the right ventricle. From here the catheter is advanced to the right ventricular outflow tract and then to the pulmonary artery after getting across the pulmonary valve. The tip of the catheter lays into the main pulmonary artery, where the balloon can be inflated and deflated for measurement of pressures. Balloon can be inflated here to obtain pulmonary capillary wedge (or occlusive) pressure which gives an indirect assessment of left sided filling pressures.
During the placement of the catheter, due to the transducer that is in the catheter, a pressure waveform can be seen in the monitor. Each section of the right heart anatomy has a distinctive pattern that can help to assist or helps to determine where is the catheter tips.
Indications
The most frequent indications for placement of a pulmonary artery catheter are the following[2][3]:
- Evaluation or diagnosis of pulmonary hypertension
- Distinduishing etiology of shock based on mixed venous oxygen saturation (SvO2) measurement such as in septic or cardiogenic shock[4]
- Assessment of volume status in severe shock[5]
- Evaluation of pericardial illnesses such as cardiac tamponade or constricitve pericarditis
- Assessment of right-sided valvular disease, congenital heart disease, cardiac shunts, when surgical repair is planned
Contraindications
Contraindications for placement of right heart catheterization are[6]:
- Insertion of the catheter through a site where is an active infection
- Presence of a Right sided ventricular assist device
- Lack of consent
A relative contraindication is the presence of left bundle branch block. If this is the case, due to the risk of right bundle branch block during catheter insertion, external or transvenous pacer should be placed at the moment of the procedure to prevent complete heart block.
Equipment
A Swan-Ganz catheter or right heart catheter is a quadruple-lumen catheter with a thermodilution sensor that is attached to a pressure transducer outside the body, with this transducer, is possible to determine the central vein pressure, right atrial pressure, right ventricular pressure, and pulmonary artery pressure[7].
The catheters size range from 60 to 110 cm in length and 4F to 8F in caliber
Each of the 4-lumen is placed in a specific distance through the length of the catheter, and each of them has a specific function, as explained[7]:
- The blue lumen or CVP port represent the right atrial lumen. Ii is at 30 cm from the tip of the catheter and rests within the right atrium. It is the proximal port and can be used for infusion. This port can assess central venous pressure (CVP) and right atrial pressure.
- The white or clear lumen terminates close to the prior lumen, at 31 cm from the tip of the catheter and lies in the right atrium. This port is used for infusion.
- The yellow lumen or PA distal is the pulmonary artery lumen is the distal port at the tip of the catheter. This port does the measurement of the pulmonary artery pressure. Mixed venous can be drawn from this port too.
- The thermistor is a red/white connector that consists a temperature-sensitive wire that terminates 4 cm proximal to the tip of the catheter. The terminal portion of the wire is called the thermistor bead, and it rests in a main pulmonary artery when the catheter tip is positioned correctly. The connection of the thermistor port to cardiac output (CO) monitor allows determination of a CO using thermodilution.
- The red port is the balloon port. Air is introduced to inflate the balloon and removed when needs to be deflated.
- The pulmonary artery catheter has a balloon that can be inflated and helps the clinician place the tip of the catheter in the pulmonary artery.
- Within the catheter, there are black lines that help to measure the length of the catheter. One thin line is 10 cm, and a thick black line indicated 50 cm.
Preparation
Preparation for the pulmonary artery catheter is similar for the placement of every invasive procedure.
Verbal consent is necessary before the procedure. Detail explanation of the procedure, risk, and benefits need to be done before starting the procedure.
Selection of the site of insertion of the catheter needs to be selected before starting the procedure. Especial consideration needs to be taken when selecting the site of insertion as skin or site infection, prior vein thrombosis or anatomical abnormalities to prevent complications. Proper catheter selection according to the insertion site is necessary.
Sterile barriers and techniques need to be done during the procedure. Proper cleaning of the site of insertion and draping of the patient is necessary. Also, the person doing the procedure needs to be wearing protective equipment and sterile barrier as sterile gloves, mask, and surgical gown.
Pulmonary artery catheterization can be done under fluoroscopy (most common) or at the bedside with use of ultrasound and echocardiography for catheter placement.
Complications
Complications related to catheter placement are similar to the placement of central catheter placement[8]. Infection of the site of insertion can occur.
Pneumothorax or hemothorax can be a complication after insertion when the catheter is placed in the subclavian vein.
Air embolism caused by entrainment of air from the infusion ports.
Complications related to catheter insertion include the occurrences of atrial or ventricular arrhythmias due to irritation or contact of the catheter with the cardiac walls[9].
Valve rupture or cardiac wall perforation can occur but it is rare.
Misplacement of the catheter can occur due to looping of the catheter in the right chambers. This can be prevented with the placement of the catheter under fluoroscopy and paying attention to the waveforms in the monitor.
Vessel rupture can happen at the moment of balloon inflation into the pulmonary artery. Pulmonary artery perforation, pseudoaneurysm formation, and rupture can develop and has a 30% to 70% mortality[10].
Pulmonary infarction can occur when the balloon is inflated for long period or migration to the catheter to the distal branches.
Thromboembolism can also occur secondary to inflammation or infection of the catheter that acts as a nidus for thrombus.
Clinical Significance
As mentioned before, placement of the PAC helps for diagnosis of multiple conditions[2][3].
PAC can help to determine causes of shock, as cardiogenic versus other causes as septic shock or distributive shock by obtaining SvO2
PAC is used to determine the cause of pulmonary hypertension for proper treatment after classification in the different groups of pulmonary hypertension.
PAC can help to determine the intracardiac pressurea and valvular abnormalities.
PAC also helps to determine intracardiac shunts and to determine hemodynamic state before the procedure.
PAC is an important procedure for diagnosis and management of different conditions and despite the underuse of this procedure, still useful.
PAC can be used to estimate pulmonary capillary wedge pressure to give indirect assessment of left sided filling pressures.
Enhancing Healthcare Team Outcomes
Pulmonary artery catheterization was once frequently done in ICU patients for various reasons. While a good technique for some patients, pulmonary artery catheterization is now being replaced by echocardiography, which has a lower morbidity than the pulmonary catheter. Pulmonary artery catheterization requires ICU nurses as part of the interprofessional team for insertion and monitoring. The technique is also associated with complications. Echo can be done at the bedside without the need for X-ray or fluoroscopy.
References
. Pulmonary Artery Catheter Consensus Conference: consensus statement. New horizons (Baltimore, Md.). 1997 Aug:5(3):175-94 [PubMed PMID: 9259329]
Level 3 (low-level) evidenceRapoport J, Teres D, Steingrub J, Higgins T, McGee W, Lemeshow S. Patient characteristics and ICU organizational factors that influence frequency of pulmonary artery catheterization. JAMA. 2000 May 17:283(19):2559-67 [PubMed PMID: 10815120]
Level 2 (mid-level) evidenceKoo KK, Sun JC, Zhou Q, Guyatt G, Cook DJ, Walter SD, Meade MO. Pulmonary artery catheters: evolving rates and reasons for use. Critical care medicine. 2011 Jul:39(7):1613-8. doi: 10.1097/CCM.0b013e318218a045. Epub [PubMed PMID: 21494107]
Level 2 (mid-level) evidenceConnors AF Jr,Speroff T,Dawson NV,Thomas C,Harrell FE Jr,Wagner D,Desbiens N,Goldman L,Wu AW,Califf RM,Fulkerson WJ Jr,Vidaillet H,Broste S,Bellamy P,Lynn J,Knaus WA, The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996 Sep 18; [PubMed PMID: 8782638]
Level 2 (mid-level) evidenceChittock DR, Dhingra VK, Ronco JJ, Russell JA, Forrest DM, Tweeddale M, Fenwick JC. Severity of illness and risk of death associated with pulmonary artery catheter use. Critical care medicine. 2004 Apr:32(4):911-5 [PubMed PMID: 15071376]
Level 2 (mid-level) evidenceEvans DC, Doraiswamy VA, Prosciak MP, Silviera M, Seamon MJ, Rodriguez Funes V, Cipolla J, Wang CF, Kavuturu S, Torigian DA, Cook CH, Lindsey DE, Steinberg SM, Stawicki SP. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scandinavian journal of surgery : SJS : official organ for the Finnish Surgical Society and the Scandinavian Surgical Society. 2009:98(4):199-208 [PubMed PMID: 20218415]
Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. The New England journal of medicine. 1970 Aug 27:283(9):447-51 [PubMed PMID: 5434111]
Lopes MC, de Cleva R, Zilberstein B, Gama-Rodrigues JJ. Pulmonary artery catheter complications: report on a case of a knot accident and literature review. Revista do Hospital das Clinicas. 2004 Apr:59(2):77-85 [PubMed PMID: 15122422]
Level 3 (low-level) evidenceSprung CL, Pozen RG, Rozanski JJ, Pinero JR, Eisler BR, Castellanos A. Advanced ventricular arrhythmias during bedside pulmonary artery catheterization. The American journal of medicine. 1982 Feb:72(2):203-8 [PubMed PMID: 7058832]
Ducatman BS, McMichan JC, Edwards WD. Catheter-induced lesions of the right side of the heart. A one-year prospective study of 141 autopsies. JAMA. 1985 Feb 8:253(6):791-5 [PubMed PMID: 3968816]
Level 3 (low-level) evidence