Indications
Preoperative antibiotic prophylaxis is defined as administering antibiotics prior to performing surgery to help decrease the risk of postoperative infections. The evidence supporting routine preoperative use of prophylactic antibiotic administration continues to grow. A 2008 study highlights the effectiveness of its administration during total hip and knee replacement, reducing the absolute risk of wound infection by over 80% compared to patients treated with no prophylaxis.[1] The routine administration of prophylactic antibiotics is standard in cases where a patient will have an artificial implant or foreign body implanted as part of the procedure, bone grafting procedures, and other surgeries with extensive dissections or expected high blood loss.
The timing of antibiotic administration may vary, but the goal of administering preoperative systemic prophylactic antibiotics is to have the concentration in the tissues at its highest at the start and during surgery.[2][3] The literature supports at least 30 minutes, but no greater than 60 minutes before the skin incision is made to the optimal timing for the preoperative administration of most commonly used antibiotics.[4][5][2] Special consideration is given to ideal preoperative timing when using a tourniquet, as the administration is least effective when the antibiotic is given after the application of a tourniquet.[6]
The most common organisms implicated as causes of surgical site infections include[7]:
- Staphylococcus aureus
- Staphylococcus epidermidis
- Aerobic streptococci
- Anaerobic cocci
Other organisms, such as Cutibacterium acnes, are characteristically isolated in the setting of postoperative infections following shoulder surgery.
The preoperative antibiotic selection is generally based on the anatomic region undergoing the specific surgical procedure. When determining appropriate antibiotic selection, the goal is to have achieved a relatively narrow spectrum of activity while ensuring the most common organisms are targeted. Additionally, preoperative antibiotics are chosen based on many factors, including cost, safety, ease of administration, pharmacokinetic profile, bacteriocidal activity, and hospital resistance patterns. By addressing all of these factors during antibiotic selection, surgical site infections (SSIs) are minimized. In aggregate, SSIs constitute a significant factor driving negative patient-reported outcomes and independent risk factors for increasing the financial burden to the entire healthcare system.[8]
Cefazolin is used most often for surgical prophylaxis in patients with no history of beta-lactam allergy or of MRSA infection. It is not used for surgical sites in which the most probable organisms are not covered by cefazolin alone (e.g., appendectomy, colorectal).
In patients requiring only cefazolin for preoperative surgical prophylaxis, clindamycin or vancomycin are often used as alternatives for those with significant allergies to the medication. Most patients with a beta-lactam allergy are able to tolerate cefazolin. In the case of MRSA colonization, or select patients at high-risk for MRSA (i.e., patients residing in nursing homes, patients with a history of MRSA infection, or patients with current positive MRSA colonization testing), vancomycin is the alternative unless additional antibiotics are required for possible gram-negative or anaerobic organisms.[9] Multiple options may be considered for patients requiring additional microbe coverage (e.g., colorectal), including cefazolin plus metronidazole, cefoxitin, or ertapenem. Additional antibiotics are options based on specific surgical sites in addition to hospital-specific and patient-specific antibiotic resistance.[10]
Weight-based dosing should be followed per standardized protocol, and administration should occur within 1 hour of skin incision and continue 24 hours postoperatively. Furthermore, surgical durations of greater than 4 hours or estimated blood loss over 1,500 mL necessitates repeat intraoperative dosing of antibiotics.[11] Weight-based guidelines include the following[12]:
- Cefazolin: 2 g (3 g for weight >120 kg) — standard adult surgical prophylaxis guidelines
- Vancomycin: 15 mg/kg
Wound Classifications[13]
Wound types can be classified as clean, clean-contaminated, contaminated, or dirty/infected, according to the Centers for Disease Control and Prevention's (CDC) National Healthcare Safety Network (NHSN). Clean wounds are not infected, without inflammation, primarily closed, and do not include the organ systems outlined in a clean-contaminated wound. Clean-contaminated wounds involve the respiratory, alimentary, genital, and urinary tract as long as the tract is entered without unusual contamination. Contaminated wounds include open, fresh accidental wounds, including those with non-purulent inflammation. Contaminated wounds also include procedures with significant breaks in sterile technique or gross spillage from the gastrointestinal tract. Dirty or infected wounds are old traumatic wounds with devitalized tissue, existing clinical infection, or perforated viscera. During clean procedures, skin florae such as coagulase-negative staphylococci (e.g., Staphylococcus epidermidis or Staphylococcus aureus) are predominant pathogens in surgical site infections. In clean-contaminated procedures, the most commonly found organisms causing surgical site infections are skin flora, gram-negative rods, and Enterococci.[14]
Skin Preparation
Other preoperative actions include basic infection control strategies, instrument sterilization, and a patient's skin preparation (e.g., methicillin-resistant Staphylococcus aureus [MRSA] decolonization, appropriate hair removal, skin antiseptic).[15] Regarding the latter, it is commonly recommended that patients about to undergo surgery perform a combination of a standard soap-and-water shower and chlorhexidine gluconate cloth wash before surgery. Murray et al. previously demonstrated that the combined protocol resulted in a 3-fold reduction in colony count for coagulase-negative Staphylococcus (CNS), a significant decrease in the rate of positive cultures for CNS and Corynebacterium, and a significant decrease in overall bacterial burden compared to soap-and-water shower alone.[16]
MRSA screening via swabs of the anterior nares weeks before elective arthroplasty procedures and reflexively treating patients based on culture results is generally institution-dependent. Positive MRSA culture results can be treated with either 2% mupirocin twice daily for five days preoperatively to the nares or 5% povidone-iodine solution to each nostril for 10 seconds per nostril, 1 hour prior to surgery, in addition to vancomycin administration at the time of surgery.[17][18]
Splenectomized Patients
Another area requiring special attention and consideration is infection prevention in patients with hyposplenism (or status post splenectomy). Davies et al. provided updated guidelines for the prevention and treatment of infections in patients with dysfunctional (or absent) splenic function:
- Pneumococcal immunization
- Haemophilus influenza type B vaccination
- Meningococcal group C conjugate vaccination
- Yearly influenza immunization
- Lifelong prophylactic antibiotics (oral phenoxymethylpenicillin or erythromycin)
Mechanism of Action
Register For Free And Read The Full Article
- Search engine and full access to all medical articles
- 10 free questions in your specialty
- Free CME/CE Activities
- Free daily question in your email
- Save favorite articles to your dashboard
- Emails offering discounts
Learn more about a Subscription to StatPearls Point-of-Care
Mechanism of Action
Multiple antibiotic classes are recommended for use in preoperative antibiotic prophylaxis. The antibiotics utilized are bactericidal instead of bacteriostatic. This means that any of the targeted organisms are killed instead of just preventing the multiplication of further growth. It should be noted that certain antibiotics can exhibit bacteriostatic or bactericidal properties depending on bacterial sensitivity and antibiotic concentration. For example, clindamycin is bacteriostatic at lower doses, but at higher doses, it can exhibit bactericidal properties. In most surgeries, the intent is to ensure the bactericidal concentration has been reached in the blood and tissues before incision.
Administration
The majority of preoperative prophylactic antibiotics are administered intravenously (IV). The initial timing of administration, redosing, if applicable, duration of prophylactic therapy, and dosing in obese patients are important components in the prevention of surgical site infections as well as antimicrobial stewardship.[19] Avoiding unnecessary use of antibiotics helps diminish adverse effects and antibiotic resistance development. Antibiotics should be given within 30 to 60 minutes of a surgical incision. Exceptions include vancomycin and levofloxacin, which require administration within 120 minutes of the procedural incision due to longer administration times. If a patient is already receiving an antibiotic for another infection before surgery and that agent is appropriate for surgical prophylaxis, an extra dose of the antibiotic can be administered within 60 minutes of the incision. If a patient is already receiving vancomycin and has renal failure, cefazolin should be considered before surgery instead of an extra vancomycin dose.[20]
Redosing antibiotics is an important factor due to the half-life of the particular antibiotic used. Factors such as renal dysfunction and extensive burns may impact the half-life of an antibiotic. Based on the antibiotics mentioned above, cefazolin and cefoxitin would have to be administered more than once, depending on the length of the procedure. A perioperative dose of cefazolin should be administered again four hours after the initial preoperative dose, while cefoxitin should be administered again two hours later. Redosing antibiotics due to significant blood loss or dilution during surgery are other considerations being studied at this time.
Unless there is a known infection, prophylactic antibiotics should be discontinued within 24 hours. There remains controversy regarding the duration of therapy to 48 hours postoperatively following cardiothoracic surgery. Two meta-analyses compared 24 hours versus 48 hours as the cut-off in cardiac surgeries. They found a significant decrease in surgical site infections with the extended duration, particularly in sternal infections. The most recent guidelines from the CDC state that additional prophylactic antibiotics should not be administered after the surgical incision is closed in clean and clean-contaminated procedures. Although there could be procedure-specific exceptions, this recommendation applies to patients with or without a drain after the surgical site is closed.
The three antibiotics used in adult surgical prophylaxis, where weight-based dosing is recommended, are cefazolin, vancomycin, and gentamicin. For patients receiving cefazolin, 2 g is the current recommended dose except for patients weighing greater than or equal to 120 kg, who should receive 3 g. Some literature states that cefazolin 2 g should be sufficient for a patient at any adult weight. Vancomycin is dosed at 15 mg/kg, and gentamicin is dosed at 5 mg/kg. Other commonly used prophylactic antibiotic dosing regimens in adults are clindamycin 900 mg, cefoxitin 2 g, and ertapenem 1 g. All prophylactic antibiotics for pediatrics are dosed based on milligrams per kilogram of body weight. Examples of pediatric dosages include cefazolin 30 mg/kg and vancomycin 15 mg/kg. Pediatric surgical prophylaxis dosages should not exceed the usual adult dose.
Adverse Effects
Limiting the duration of all antibiotics is important since any antimicrobial usage can alter hospital and patient bacterial flora, which can potentially lead to colonization, resistance, or Clostridium difficile. The judicious use of vancomycin must be considered to mitigate the potentially increased risk of vancomycin-resistant enterococcus (VRE).
Contraindications
Beta-lactam antibiotics, including cephalosporins, are commonly used for surgical prophylaxis, so it is crucial to identify when these antibiotics are contraindicated. If a patient has an immunoglobulin (IgE) mediated (i.e., type 1) allergy to penicillin, then penicillins, cephalosporins, and carbapenems should not be administered. A type 1 reaction would be considered anaphylaxis, urticaria, or bronchospasm that occurs 30 to 60 minutes following administration of the antibiotic. Cephalosporins and carbapenems are considered safe in patients who have not had a type-1 reaction or exfoliative dermatitis (e.g., Stevens-Johnson syndrome and toxic epidermal necrolysis). Obtaining a thorough allergy history from each patient is vital to determine whether the patient's allergy is a real and significant allergy that would impact the usual preoperative surgical prophylaxis.
Monitoring
Surgical site infections may occur for various reasons, including, but not limited to, incorrect antibiotic usage. When considering antibiotic prophylaxis practices, the correct antibiotic dosage, timing of the initial dose, and timing of any applicable redosing are major factors to review to ensure best practices are always followed. If an institution recommends a specific antibiotic in surgery when additional antibiotics are options, monitoring should ensure no surgical site infections occur due to increasing local resistance. One example could be that growing clindamycin resistance has translated to increased surgical site infections in those receiving clindamycin due to a penicillin allergy. That information could lead an institution to switch to vancomycin instead of clindamycin in that patient population. Antibiotic selection should also be reviewed to avoid using antibiotics, resulting in new or worsening resistance patterns identified on the antibiogram. An institution may choose to use cefoxitin instead of ertapenem in colorectal surgeries to avoid excessive usage of the carbapenem class when applicable, especially if the institution has an escalating number of carbapenem-resistant organisms.[21]
Toxicity
No apparent toxicities are known with the recommended doses. This is partially due to the limited duration of antibiotic exposure in surgical prophylaxis.
Enhancing Healthcare Team Outcomes
The comprehensive and consistent practice regarding the routine perioperative antibiotic prophylactic measures requires the coordination of the entire perioperative interprofessional healthcare staff. This includes but is not limited to the entire operating room and perioperative staff members (including surgical techs, perioperative-based nursing staff, floor nurses, advanced practitioners, pharmacists, and all clinicians participating in the care of surgical patients). This interprofessional approach will optimize antibiotic prophylaxis, minimize adverse events, and drive optimal patient outcomes. [Level 5]
References
AlBuhairan B, Hind D, Hutchinson A. Antibiotic prophylaxis for wound infections in total joint arthroplasty: a systematic review. The Journal of bone and joint surgery. British volume. 2008 Jul:90(7):915-9. doi: 10.1302/0301-620X.90B7.20498. Epub [PubMed PMID: 18591602]
Level 1 (high-level) evidenceTarchini G, Liau KH, Solomkin JS. Antimicrobial Stewardship in Surgery: Challenges and Opportunities. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2017 May 15:64(suppl_2):S112-S114. doi: 10.1093/cid/cix087. Epub [PubMed PMID: 28475788]
W-Dahl A, Robertsson O, Stefánsdóttir A, Gustafson P, Lidgren L. Timing of preoperative antibiotics for knee arthroplasties: Improving the routines in Sweden. Patient safety in surgery. 2011 Sep 19:5():22. doi: 10.1186/1754-9493-5-22. Epub 2011 Sep 19 [PubMed PMID: 21929781]
Gyssens IC. Preventing postoperative infections: current treatment recommendations. Drugs. 1999 Feb:57(2):175-85 [PubMed PMID: 10188759]
Galandiuk S, Polk HC Jr, Jagelman DG, Fazio VW. Re-emphasis of priorities in surgical antibiotic prophylaxis. Surgery, gynecology & obstetrics. 1989 Sep:169(3):219-22 [PubMed PMID: 2672385]
Stefánsdóttir A, Robertsson O, W-Dahl A, Kiernan S, Gustafson P, Lidgren L. Inadequate timing of prophylactic antibiotics in orthopedic surgery. We can do better. Acta orthopaedica. 2009 Dec:80(6):633-8. doi: 10.3109/17453670903316868. Epub [PubMed PMID: 19995312]
Tan TL, Gomez MM, Kheir MM, Maltenfort MG, Chen AF. Should Preoperative Antibiotics Be Tailored According to Patient's Comorbidities and Susceptibility to Organisms? The Journal of arthroplasty. 2017 Apr:32(4):1089-1094.e3. doi: 10.1016/j.arth.2016.11.021. Epub 2016 Nov 23 [PubMed PMID: 28040397]
Varacallo MA, Mattern P, Acosta J, Toossi N, Denehy KM, Harding SP. Cost Determinants in the 90-Day Management of Isolated Ankle Fractures at a Large Urban Academic Hospital. Journal of orthopaedic trauma. 2018 Jul:32(7):338-343. doi: 10.1097/BOT.0000000000001186. Epub [PubMed PMID: 29738399]
Bosco JA 3rd, Slover JD, Haas JP. Perioperative strategies for decreasing infection: a comprehensive evidence-based approach. Instructional course lectures. 2010:59():619-28 [PubMed PMID: 20415410]
Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, Fish DN, Napolitano LM, Sawyer RG, Slain D, Steinberg JP, Weinstein RA, American Society of Health-System Pharmacists, Infectious Disease Society of America, Surgical Infection Society, Society for Healthcare Epidemiology of America. Clinical practice guidelines for antimicrobial prophylaxis in surgery. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists. 2013 Feb 1:70(3):195-283. doi: 10.2146/ajhp120568. Epub [PubMed PMID: 23327981]
Level 1 (high-level) evidenceDehne MG, Mühling J, Sablotzki A, Nopens H, Hempelmann G. Pharmacokinetics of antibiotic prophylaxis in major orthopedic surgery and blood-saving techniques. Orthopedics. 2001 Jul:24(7):665-9 [PubMed PMID: 11478553]
Level 1 (high-level) evidenceClark JJC, Abildgaard JT, Backes J, Hawkins RJ. Preventing infection in shoulder surgery. Journal of shoulder and elbow surgery. 2018 Jul:27(7):1333-1341. doi: 10.1016/j.jse.2017.12.028. Epub 2018 Feb 12 [PubMed PMID: 29444755]
Berríos-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, Reinke CE, Morgan S, Solomkin JS, Mazuski JE, Dellinger EP, Itani KMF, Berbari EF, Segreti J, Parvizi J, Blanchard J, Allen G, Kluytmans JAJW, Donlan R, Schecter WP, Healthcare Infection Control Practices Advisory Committee. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA surgery. 2017 Aug 1:152(8):784-791. doi: 10.1001/jamasurg.2017.0904. Epub [PubMed PMID: 28467526]
Pfeffer I, Zemel M, Kariv Y, Mishali H, Adler A, Braun T, Klein A, Matalon MK, Klausner J, Carmeli Y, Schwaber MJ. Prevalence and risk factors for carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae among patients prior to bowel surgery. Diagnostic microbiology and infectious disease. 2016 Jul:85(3):377-380. doi: 10.1016/j.diagmicrobio.2016.04.002. Epub 2016 Apr 8 [PubMed PMID: 27133560]
Chauveaux D. Preventing surgical-site infections: measures other than antibiotics. Orthopaedics & traumatology, surgery & research : OTSR. 2015 Feb:101(1 Suppl):S77-83. doi: 10.1016/j.otsr.2014.07.028. Epub 2015 Jan 23 [PubMed PMID: 25623269]
Murray MR, Saltzman MD, Gryzlo SM, Terry MA, Woodward CC, Nuber GW. Efficacy of preoperative home use of 2% chlorhexidine gluconate cloth before shoulder surgery. Journal of shoulder and elbow surgery. 2011 Sep:20(6):928-33. doi: 10.1016/j.jse.2011.02.018. Epub 2011 May 25 [PubMed PMID: 21612945]
Level 1 (high-level) evidencePhillips M, Rosenberg A, Shopsin B, Cuff G, Skeete F, Foti A, Kraemer K, Inglima K, Press R, Bosco J. Preventing surgical site infections: a randomized, open-label trial of nasal mupirocin ointment and nasal povidone-iodine solution. Infection control and hospital epidemiology. 2014 Jul:35(7):826-32. doi: 10.1086/676872. Epub 2014 May 21 [PubMed PMID: 24915210]
Level 1 (high-level) evidenceCampbell KA, Stein S, Looze C, Bosco JA. Antibiotic stewardship in orthopaedic surgery: principles and practice. The Journal of the American Academy of Orthopaedic Surgeons. 2014 Dec:22(12):772-81. doi: 10.5435/JAAOS-22-12-772. Epub [PubMed PMID: 25425612]
Chen X, Brathwaite CE, Barkan A, Hall K, Chu G, Cherasard P, Wang S, Nicolau DP, Islam S, Cunha BA. Optimal Cefazolin Prophylactic Dosing for Bariatric Surgery: No Need for Higher Doses or Intraoperative Redosing. Obesity surgery. 2017 Mar:27(3):626-629. doi: 10.1007/s11695-016-2331-9. Epub [PubMed PMID: 27520693]
Unger NR, Stein BJ. Effectiveness of pre-operative cefazolin in obese patients. Surgical infections. 2014 Aug:15(4):412-6. doi: 10.1089/sur.2012.167. Epub 2014 May 13 [PubMed PMID: 24824510]
Level 2 (mid-level) evidenceDeierhoi RJ, Dawes LG, Vick C, Itani KM, Hawn MT. Choice of intravenous antibiotic prophylaxis for colorectal surgery does matter. Journal of the American College of Surgeons. 2013 Nov:217(5):763-9. doi: 10.1016/j.jamcollsurg.2013.07.003. Epub 2013 Sep 14 [PubMed PMID: 24045142]
Level 2 (mid-level) evidence