Introduction
Neuroblastoma (NB) is the most frequently-occurring extracranial childhood tumor. It is classified as an embryonal neuroendocrine tumor, originating from neural crest progenitor cells.[1] Hence, it can occur anywhere along the sympathetic nervous system, including the superior cervical, paraspinal, and celiac ganglia; the majority arise in the adrenal glands.[2] Due to the high variability in its presentation, clinical signs and symptoms at presentation can range from a benign palpable mass with distension to major illness from substantial tumor spread. Although overall increases in five-year event-free survival have been reported, subgroup-specific analysis of mortality has revealed discordance between the high cure rates for the more benign low-risk forms and little improvement in the high-risk groups.[3][4] Thus, the impetus for the development of targeted therapeutics in the intensive management of high-risk groups is strong.
Etiology
Register For Free And Read The Full Article
- Search engine and full access to all medical articles
- 10 free questions in your specialty
- Free CME/CE Activities
- Free daily question in your email
- Save favorite articles to your dashboard
- Emails offering discounts
Learn more about a Subscription to StatPearls Point-of-Care
Etiology
Risk factors for the acquisition of mutations in key genes leading to neuroblastoma have yet to be identified, although exposures during conception and pregnancy are a topic of investigation. Neuroblastoma can develop either sporadically or be transmitted in the germline. Most familial cases of neuroblastoma occur due to the inheritance of highly penetrant mutations in either the ALK or PHOX2B genes.[2] [5] A small subset of familial NB demonstrates autosomal dominant inheritance.[6] Although up to 15% of sporadic cases of neuroblastoma arise from mutations in ALK, more common transforming mutations involve polymorphisms in BARD1 (2q35), LIN28B (6q16.3), or FLJ22536 (6p22.3). Cytogenetic aberrations can further include loss of chromosome 1p and 11q, copy number variation in 1q21, and gain of 17q.[1][7][8][9] Notably, amplification of MYCN oncogene is seen in approximately 25% of patients and is associated with the poorest prognosis; 17q gain and 1p loss correlate with MYCN amplification.[1][10]
Epidemiology
Neuroblastoma is the most common tumor of the sympathetic nervous system (97%) and the most common malignancy of infancy with a median age of diagnosis of 17 months.[11] It accounts for 15% of pediatric cancer-related deaths.[12] The annual incidence of neuroblastoma in the United States is approximately 650 cases, i.e., 10.2 per million children (65 per million infants), with little change (0.4%) over time.[2] While an overall improvement in five-year mortality has been noted between 1975 through 2005, subgroup-specific mortality paints a different picture.
Pathophysiology
Many biological markers of neuroblastoma have been discovered, of which the most important is MYCN. This oncogene is overexpressed in nearly 25% of patients with neuroblastoma. The gene is also commonly found in patients with advanced cancer. Patients with the MYCN gene tend to have rapid progression of cancer and poor outcomes. On the other hand, expression of the H-Ras gene is associated with low stage disease.
The DNA index is also used to assess response to treatment. Those with a DNA index of more than 1 tend to show a good response to doxorubicin and cyclophosphamide compared to those with an index of less than 1. Other biological markers linked to poor prognosis include lack of expression of glycoprotein CD 44 and elevated levels of telomerase RNA. Other markers linked to poor prognosis include elevated levels of LDH, serum ferritin, and serum neuron-specific enolase.
Close to 90% of patients have elevations in vanillyl mandelic acid and homovanillic acid in the urine. In Japan, mass screening using urinary catecholamines has been shown to lower deaths from high-risk neuroblastomas.
Neuroblastomas can develop in the adrenal gland (most common), paraspinal ganglia, and less often in the thorax, pelvis, and cervical areas. Infants commonly present with neck or thoracic masses, whereas older children tend to present with abdominal masses.
The symptoms are chiefly due to the mass of the lesion, which increases abdominal girth and causes pain. Lesions in the spinal canal can present with neurological deficits.
Histopathology
Histopathology will reveal small round blue cells with clustering of cells in the connective tissue and the presence of pseudorosettes. These pseudorosettes are only seen in 10%-15% of cases.
History and Physical
Given the wide areas populated by neural crest cells, neuroblastoma can present in the neck, chest, abdomen, or pelvis. With the most frequent site of origin being the adrenal medulla, patients often present with a solid abdominal mass. With the involvement of the superior cervical ganglia, aside from a neck mass, Horner syndrome (ptosis, miosis, anhydrosis) can be observed. If the tumor involves the spinal cord, cord compression, or paralysis may be seen. Furthermore, tumor behavior can range from spontaneous regression to widespread dissemination at presentation. With over half of all neuroblastoma patients having hematogenous spread at diagnosis, the disease can involve the bone and bone marrow (56% and 71%, respectively), followed by lymph nodes (31%), and lungs (3%). Non-specific clinical signs include fever, weight loss, and fatigue. Thus, signs and symptoms, which can range from an asymptomatic palpable mass to significant critical illness, are highly variable and dependent upon factors now linked with prognosis.
Hypertension is rare and is often caused by compression of the renal artery rather than the catecholamine excess.
Chronic diarrhea due to the secretion of vasoactive intestinal peptide may be the initial presentation.
When the bone is involved, pain and a limp may be present. In addition, bone metastases may present with pathological fractures.
Thoracic lesions may present with Horner syndrome.
In rare cases, the patient may present with myoclonus and opsoclonus. These patients tend to have localized disease and good outcomes. However, the neurological deficit can be disabling.
Evaluation
Clinical Evaluation
Diagnostic evaluation relies not only on a careful history and physical, but also on biochemical, histologic, and radiographic analyses. Laboratory studies should include the following:
- CBC
- Renal function
- Liver function
- Electrolytes
- LDH
Histologic confirmation is required to establish a diagnosis of neuroblastoma. Histologically, small round pale blue cells, known as Homer-Wright pseudorosettes, can be seen; these are similarly seen in Wilm's tumor and Ewing sarcoma, leading to their common group categorization as small blue cell tumors.[1] If a biopsy sample is tumor-positive, DNA ploidy and MYCN gene status are further evaluated. Since neuroblastoma cells originate from neural crest cells destined to differentiate into sympathetic peripheral neurons, cells often produce catecholamines; break-down products of these catecholamines are homovanillic acid (HVA) and vanillylmandelic acid (VMA). Thus, in over 90% of neuroblastoma, elevation in these catecholamine breakdown products in urine is diagnostic.[13]
Preliminary imaging is preferentially conducted with MRI for good resolution and surgical excision planning. Further exploiting sympathetic neuronal uptake of mIBG (metaiodobenzylguanidine), due to its analogous nature to norepinephrine, the extent of neuroblastoma metastasis can be delineated with an mIBG scan with high accuracy and quality.[14] To complete tumor staging, bone marrow biopsies are required.[1] Of note, common paraneoplastic conditions associated with neuroblastoma include opsoclonus-myoclonus syndrome and intractable secretory diarrhea due to vasoactive intestinal peptide (VIP) secretion.[15][16]
CT scan of the abdomen and chest are recommended to look for calcifications and metastatic lesions.
MRI is the spine is required if cord compression and Horner syndrome are suspected.
Skeletal surveys may help assess the presence of metastatic lesions.
Baseline ECG and echocardiogram are necessary. Baseline hearing is recommended before initiating cisplatinum treatment.
Treatment / Management
Given the heterogeneity in tumor location, grade, and stage at diagnosis, treatment modalities include simple observation, surgical resection, chemotherapy, radiation therapy, stem cell transplantation, and immunotherapy. Patients with low-risk NB have localized tumors, some (infants) with a high propensity for spontaneous tumor regression.[17] Thus, children with small tumors (less than 5 cm) can be observed with imaging done every six to 12 weeks to monitor tumor growth, thus avoiding surgery in the young infant altogether.[1]
For larger, localized tumors, in patients' past infancy, surgical resection is pursued. For patients younger than 18 months of age, the observational approach is currently under international investigation by COG (NCT02176967) and SIOPEN (NCT01728155) cooperative groups. For children who present with symptoms, limited chemotherapy is given without surgical palliation or radiation therapy.[1]
The intermediate-risk group presents with localized metastasis, i.e., to the lymph node or bone marrow (in infants). They are usually managed with chemotherapy alone and possible surgical resection if able.[18]
The high-risk group has the worst prognosis and presents with widespread metastatic disease to the bone marrow, bone, lungs, and liver. They receive induction chemotherapy to reduce tumor burden at both the primary and metastatic locations, followed by maximal surgical resection, followed by myeloablative chemotherapy and stem-cell transplantation. After that, patients are managed on a combination of maintenance chemotherapy and immunotherapy.[19] A monoclonal antibody, dinutuximab that attaches to a carbohydrate molecule (GD2) on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Dinutuximab treatment is reported to improve the two-year event-free survival of high-risk neuroblastoma patients from 46% to 66%.[20](A1)
Surgery plays a vital role in the treatment of neuroblastoma. For localized disease, one can obtain a cure with surgery. Sometimes surgery is needed to establish a diagnosis. Second look surgery after chemotherapy is often done for debulking purposes.
Differential Diagnosis
- Dermoid cyst
- Ewings sarcoma
- Germ cell tumour
- Hepatoblastoma
- Infantile fibromatosis
- Infection
- Lymphoma
- Rhabdomyosarcoma
- Small round cell sarcoma
- Wilm’s syndrome
Staging
The International Neuroblastoma Staging System (INSS) based on surgical resection is used to stage neuroblastomas in the United States.
Stage 1:
- A localized lesion with complete gross excision. There may be microscopic residual disease
- Ipsilateral lymph nodes are negative for cancer
Stage 2:
- Localized tumor with obvious gross tumor not completely excised
- Ipsilateral lymph nodes are negative for cancer
Stage 2B
- Localized tumor with complete gross excision but ipsilateral lymph nodes are positive for tumor
- Enlarged contralateral lymph nodes are negative for cancer
Stage 3:
- Unresectable cancer that has crossed the midline, there is regional lymph node involvement
- A localized unilateral lesion with positive contralateral lymph nodes
Stage 4: Any primary lesion that has spread to distant lymph nodes, liver, bone marrow or skin
Stage 4s:
- Localized primary tumor with spread limited to liver, skin or bone marrow
- Limited to infants
Subgroup Classification
The widespread variability in neuroblastoma tumor behavior is linked to multiple factors now linked with patient prognosis. Classic prognostic categorization by Children’s Oncology Group (COG) divides patients into four groups based on patient age, post-surgical stage, MYCN amplification, histology, and DNA ploidy [3]:
- Low risk: localized tumor only, greater than 90% survival
- Intermediate risk: localized tumor with regional extension and/or metastases to bone and bone marrow, 90% to 95% survival
- High risk: widely disseminated disease (excluding infants), 40% to 50% survival
- Tumor stage 4S: widely disseminated disease in infants, greater than 90% survival due to spontaneous regression of the tumor.
However, COG classification of neuroblastoma has differed from the European SIOPEN and other cooperative groups. In 2004, the International Neuroblastoma Risk Group (INRG), a task force of pediatric neuroblastoma experts worldwide, met with the primary aim of developing a consensus approach to neuroblastoma risk stratification pre-treatment.[21] Using patient age, tumor stage, tumor grade, and differentiation, tumor histology, MYCN amplification, cytogenetic aberrations in 11q, and DNA ploidy, the group defined 16 pre-treatment groups broadly divisible into four prognostic subgroups based on five-year event-free survival (EFS):
- Very low risk: five-year event-free survival (EFS) greater than 85%
- Low risk: five-year EFS 75% to 85%
- Intermediate risk: five-year EFS 50% to 75%
- High risk: five-year EFS less than 50%
Over 50% of newly diagnosed neuroblastoma are very-low or low-risk.[21] Negative prognostic markers include age older than 18 months, metastasis at diagnosis, and presence of MYCN amplification, 1p loss, 11q loss, 17q gain, or DNA copy number alterations.[1][21]
Enhancing Healthcare Team Outcomes
Neuroblastoma is a rare abdominal tumor in young children. However, if the diagnosis is missed, the tumor is fatal. Hence, the diagnosis and treatment of neuroblastoma are best managed by an interprofessional team that includes a pediatrician, a pediatric surgeon, oncologist, radiation therapist, social workers, pharmacist, dietitian, and specialty care nurses. A team dedicated to childhood cancers is vital as these patients have special needs. All cancer treatments can stunt growth, and hence, a dietitian should be involved early in the care.
The tumor may occur anywhere along the sympathetic chain and can be mistaken for a Wilms tumor. Oncologic pharmacists assist in the formulation of chemotherapy, check for drug-drug interactions, and provide family and patient education. Oncology nurse practitioners and nurses play a vital role in patient care and the education of the family. Occupation therapy is necessary as some children may develop neurological deficits that may impair motor function. A positive environment is essential to ensure that the child thrives in this difficult situation. Team members should openly communicate with each other to improve their care. [Level 5]
Over the past decade, the survival of these patients has slightly improved for early-stage lesions, but for late stages, the survival is abysmal. Thus, the impetus for the development of targeted therapeutics in the intensive management of high-risk groups is strong.[22][23]
References
Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA. Neuroblastoma. Nature reviews. Disease primers. 2016 Nov 10:2():16078. doi: 10.1038/nrdp.2016.78. Epub 2016 Nov 10 [PubMed PMID: 27830764]
Maris JM. Recent advances in neuroblastoma. The New England journal of medicine. 2010 Jun 10:362(23):2202-11. doi: 10.1056/NEJMra0804577. Epub [PubMed PMID: 20558371]
Level 3 (low-level) evidenceMaris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet (London, England). 2007 Jun 23:369(9579):2106-20 [PubMed PMID: 17586306]
Linabery AM, Ross JA. Childhood and adolescent cancer survival in the US by race and ethnicity for the diagnostic period 1975-1999. Cancer. 2008 Nov 1:113(9):2575-96. doi: 10.1002/cncr.23866. Epub [PubMed PMID: 18837040]
Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, Laureys G, Speleman F, Kim C, Hou C, Hakonarson H, Torkamani A, Schork NJ, Brodeur GM, Tonini GP, Rappaport E, Devoto M, Maris JM. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008 Oct 16:455(7215):930-5. doi: 10.1038/nature07261. Epub 2008 Aug 24 [PubMed PMID: 18724359]
Knudson AG Jr, Strong LC. Mutation and cancer: neuroblastoma and pheochromocytoma. American journal of human genetics. 1972 Sep:24(5):514-32 [PubMed PMID: 4340974]
Maris JM, Mosse YP, Bradfield JP, Hou C, Monni S, Scott RH, Asgharzadeh S, Attiyeh EF, Diskin SJ, Laudenslager M, Winter C, Cole KA, Glessner JT, Kim C, Frackelton EC, Casalunovo T, Eckert AW, Capasso M, Rappaport EF, McConville C, London WB, Seeger RC, Rahman N, Devoto M, Grant SF, Li H, Hakonarson H. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. The New England journal of medicine. 2008 Jun 12:358(24):2585-93. doi: 10.1056/NEJMoa0708698. Epub 2008 May 7 [PubMed PMID: 18463370]
Level 2 (mid-level) evidenceCapasso M, Devoto M, Hou C, Asgharzadeh S, Glessner JT, Attiyeh EF, Mosse YP, Kim C, Diskin SJ, Cole KA, Bosse K, Diamond M, Laudenslager M, Winter C, Bradfield JP, Scott RH, Jagannathan J, Garris M, McConville C, London WB, Seeger RC, Grant SF, Li H, Rahman N, Rappaport E, Hakonarson H, Maris JM. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nature genetics. 2009 Jun:41(6):718-23. doi: 10.1038/ng.374. Epub 2009 May 3 [PubMed PMID: 19412175]
Diskin SJ, Capasso M, Schnepp RW, Cole KA, Attiyeh EF, Hou C, Diamond M, Carpenter EL, Winter C, Lee H, Jagannathan J, Latorre V, Iolascon A, Hakonarson H, Devoto M, Maris JM. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nature genetics. 2012 Oct:44(10):1126-30. doi: 10.1038/ng.2387. Epub 2012 Sep 2 [PubMed PMID: 22941191]
Level 2 (mid-level) evidenceHeukamp LC, Thor T, Schramm A, De Preter K, Kumps C, De Wilde B, Odersky A, Peifer M, Lindner S, Spruessel A, Pattyn F, Mestdagh P, Menten B, Kuhfittig-Kulle S, Künkele A, König K, Meder L, Chatterjee S, Ullrich RT, Schulte S, Vandesompele J, Speleman F, Büttner R, Eggert A, Schulte JH. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Science translational medicine. 2012 Jul 4:4(141):141ra91. doi: 10.1126/scitranslmed.3003967. Epub [PubMed PMID: 22764207]
Level 3 (low-level) evidenceLondon WB, Castleberry RP, Matthay KK, Look AT, Seeger RC, Shimada H, Thorner P, Brodeur G, Maris JM, Reynolds CP, Cohn SL. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005 Sep 20:23(27):6459-65 [PubMed PMID: 16116153]
Level 2 (mid-level) evidenceAlthoff K, Beckers A, Bell E, Nortmeyer M, Thor T, Sprüssel A, Lindner S, De Preter K, Florin A, Heukamp LC, Klein-Hitpass L, Astrahantseff K, Kumps C, Speleman F, Eggert A, Westermann F, Schramm A, Schulte JH. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene. 2015 Jun:34(26):3357-68. doi: 10.1038/onc.2014.269. Epub 2014 Sep 1 [PubMed PMID: 25174395]
Level 3 (low-level) evidenceLaBrosse EH, Com-Nougué C, Zucker JM, Comoy E, Bohuon C, Lemerle J, Schweisguth O. Urinary excretion of 3-methoxy-4-hydroxymandelic acid and 3-methoxy-4-hydroxyphenylacetic acid by 288 patients with neuroblastoma and related neural crest tumors. Cancer research. 1980 Jun:40(6):1995-2001 [PubMed PMID: 7371035]
Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JC, Heiba S, Serafini A, Tumeh S, Khutoryansky N, Jacobson AF. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatric blood & cancer. 2009 Jul:52(7):784-90. doi: 10.1002/pbc.21932. Epub [PubMed PMID: 19185008]
Level 1 (high-level) evidenceKaplan SJ, Holbrook CT, McDaniel HG, Buntain WL, Crist WM. Vasoactive intestinal peptide secreting tumors of childhood. American journal of diseases of children (1960). 1980 Jan:134(1):21-4 [PubMed PMID: 6101297]
Level 3 (low-level) evidenceBrunklaus A, Pohl K, Zuberi SM, de Sousa C. Investigating neuroblastoma in childhood opsoclonus-myoclonus syndrome. Archives of disease in childhood. 2012 May:97(5):461-3. doi: 10.1136/adc.2010.204792. Epub 2011 Apr 3 [PubMed PMID: 21460401]
Level 2 (mid-level) evidenceMatthay KK. Stage 4S neuroblastoma: what makes it special? Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1998 Jun:16(6):2003-6 [PubMed PMID: 9626196]
Baker DL, Schmidt ML, Cohn SL, Maris JM, London WB, Buxton A, Stram D, Castleberry RP, Shimada H, Sandler A, Shamberger RC, Look AT, Reynolds CP, Seeger RC, Matthay KK, Children’s Oncology Group. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. The New England journal of medicine. 2010 Sep 30:363(14):1313-23. doi: 10.1056/NEJMoa1001527. Epub [PubMed PMID: 20879880]
Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK, Hogarty M, COG Neuroblastoma Committee. Children's Oncology Group's 2013 blueprint for research: neuroblastoma. Pediatric blood & cancer. 2013 Jun:60(6):985-93. doi: 10.1002/pbc.24433. Epub 2012 Dec 19 [PubMed PMID: 23255319]
Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM, Children's Oncology Group. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. The New England journal of medicine. 2010 Sep 30:363(14):1324-34. doi: 10.1056/NEJMoa0911123. Epub [PubMed PMID: 20879881]
Level 1 (high-level) evidenceCohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK, INRG Task Force. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009 Jan 10:27(2):289-97. doi: 10.1200/JCO.2008.16.6785. Epub 2008 Dec 1 [PubMed PMID: 19047291]
Level 2 (mid-level) evidenceZage PE. Novel Therapies for Relapsed and Refractory Neuroblastoma. Children (Basel, Switzerland). 2018 Oct 31:5(11):. doi: 10.3390/children5110148. Epub 2018 Oct 31 [PubMed PMID: 30384486]
Bansal D, Totadri S, Chinnaswamy G, Agarwala S, Vora T, Arora B, Prasad M, Kapoor G, Radhakrishnan V, Laskar S, Kaur T, Rath GK, Bakhshi S. Management of Neuroblastoma: ICMR Consensus Document. Indian journal of pediatrics. 2017 Jun:84(6):446-455. doi: 10.1007/s12098-017-2298-0. Epub 2017 Apr 3 [PubMed PMID: 28367616]
Level 3 (low-level) evidence