Back To Search Results

Carbon Dioxide Embolism

Editor: Cindy Ku Updated: 11/28/2022 1:40:50 PM

Introduction

Laparoscopic surgery has gained increasing popularity in clinical practice. As part of laparoscopic surgeries, gas insufflation is usually adopted to increase operative space and visualization for surgeons. The abdomen is the most common location for these laparoscopic interventions, particularly gastrointestinal and gynecologic surgeries. Carbon dioxide (CO2) is the most commonly used gas for insufflation during laparoscopic surgery because it is colorless, inexpensive, non-flammable, and has higher blood solubility than air, which reduces the risk of complications if venous embolism occurs.[1]

The use of CO2 gas for insufflation presents some risks. Among the most common complications associated with CO2 insufflation is CO2 embolism. Although CO2 micro embolism commonly occurs during laparoscopy, clinically significant emboli are rare and potentially fatal. The clinical sign of CO2 embolism depends on the volume of embolized gas and range from asymptomatic to cardiovascular collapse or even death. This topic reviews the epidemiology, pathophysiology, clinical presentation, treatment, and prevention of CO2 embolisms.

Etiology

Register For Free And Read The Full Article
Get the answers you need instantly with the StatPearls Clinical Decision Support tool. StatPearls spent the last decade developing the largest and most updated Point-of Care resource ever developed. Earn CME/CE by searching and reading articles.
  • Dropdown arrow Search engine and full access to all medical articles
  • Dropdown arrow 10 free questions in your specialty
  • Dropdown arrow Free CME/CE Activities
  • Dropdown arrow Free daily question in your email
  • Dropdown arrow Save favorite articles to your dashboard
  • Dropdown arrow Emails offering discounts

Learn more about a Subscription to StatPearls Point-of-Care

Etiology

CO2 embolism may occur during insufflation of the abdomen for laparoscopic surgeries. This usually occurs due to the accidental placement of the Veress needle into an organ or large vessel.[2] After negative aspiration, the insertion of the Veress needle and subsequent CO2 insufflation are both techniques performed without visual guidance. Later onset embolism may be associated with injured vessels that allow CO2 to enter the circulation.[3]

Epidemiology

The incidence of CO2 embolism is very rare. A recent meta-analysis reported 7 in 489335 laparoscopic surgeries (0.001%).[4]  However, when transesophageal echocardiography (TEE) was used during laparoscopic surgery to monitor for CO2 embolism, the incidence of any grade of gas embolism during laparoscopic surgeries varied widely. The incidence of CO2 embolism varied between 6.25% and 100%.[5][6] Despite these variations in incidence, clinically significant CO2 embolism remains fatal, with mortality as high as 28%.[7]

Pathophysiology

Two possible mechanisms can explain the pathophysiology of CO2 embolism:

1) CO2 embolism can occur from the accidental intravascular injection of CO2, which may arise from the inappropriate placement of the Veress needle within the intravascular space. A similar mechanism is possible with trocar insertion.

2) CO2 embolism can also result from gas entering injured vessels, abdominal walls, or operative sites. This proposed mechanism results in less profound clinical change and may explain late-onset CO2 embolism.

The volume of gas entrained affects clinical presentation. In a study on cardiopulmonary responses to experimental venous CO2 embolism in pigs, researchers found a mortality of 60% at a continuous intravenous CO2 infusion rate of 1.2 mL/kg/min.[8] When converted for a 60 kg person, this equates to a rate of 72 mL/min and represents approximately 5% of the volume of CO2 that could be infused into a vein by a Veress needle in 1 minute at a low-flow rate.[8]

Gas in the venous circulation may obstruct pulmonary circulation and cause cardiac symptoms, including cardiovascular collapse and neurological sequelae.[2] It is associated with hypotension, increased central venous pressure (CVP), pulmonary arterial pressure (PAP), and hypoxemia.[9] In patients with patent foramen ovale, paradoxical arterial embolism may be possible and can result in transient or permanent neurological deficits.

History and Physical

CO2 embolism may be small, asymptomatic, transient, and self-resolving. Signs of gas embolism include systemic hypotension, tachypnea, dyspnea, cyanosis, tachycardia or bradycardia, arrhythmia, asystole, or “mill-wheel” splashing auscultatory murmur.[6] Paradoxical embolism may be associated with altered mental status, focal neurological deficits, or loss of consciousness.

Evaluation

Transesophageal (TEE) is the most sensitive method for detecting subclinical intravenous CO2 as small as 0.1mL/kg.[10] The TEE transgastric view has been shown to identify CO2 embolism optimally.[11][12][13] The transesophageal Doppler is a highly sensitive but less expensive alternative to TEEs.[13] The precordial Doppler may also be used but has a high false-negative rate associated with the positioning of the probe.[6] Standard intraoperative noninvasive monitors can aid in detecting CO2 embolism, albeit with less sensitivity. Five-lead ECG may show right ventricular strain as indicated by widened QRS complex, right bundle branch block, and right axis deviation. A sudden decrease or loss of end-tidal CO2 suggests a drastic decrease in cardiac output due to gas embolism. Continuous pulmonary arterial pressure can be used to evaluate for gas embolism.[6]

Treatment / Management

Management of a suspected CO2 embolism begins with desufflation of the abdomen.[14] Surgeons should be informed immediately and stop insufflation when there is clinical suspicion of CO2 embolism. Note that hemorrhage is possible when the intraabdominal pressure is reduced since the embolism may have been due to a vascular injury. The Durant or Trendelenburg position directs the gas bubble into the right ventricle apex and away from the pulmonary artery.[2][15](B3)

Ventilation with 100% oxygen could wash out CO2, reduce ventilation-perfusion mismatch, and improve hypoxemia.[16] Hyperventilation is also used to help eliminate CO2. While the placement of a multi-orifice central venous catheter may be a consideration in surgeries with a high risk of air embolism (eg, specific neurosurgical cases) to perform an aspiration, placement of a central venous catheter in an unanticipated case of CO2 embolism would be more beneficial for potential vasopressor administration, although aspiration could be attempted.[2](B3)

Also, hyperbaric oxygen may reduce bubble size in patients experiencing neurologic deficits. Supportive treatment with fluid, vasopressors, and cardiopulmonary bypass may be necessary for patients with severe cardiovascular collapse.[6]

Differential Diagnosis

The differential diagnoses for a carbon dioxide embolism includes the following:

  • Air embolism
  • Pulmonary embolism
  • Pneumothorax
  • Bronchospasm
  • Pulmonary edema
  • Hypovolemia
  • Cardiogenic shock
  • Myocardial infarction
  • Septic shock
  • Electromechanical dissociation
  • Cerebral hypoperfusion
  • Stroke
  • Other embolisms (eg, amniotic fluid, fat)

Prognosis

The prognosis varies depending on the size of the embolism and the severity of clinical presentation.

Complications

The complications that can manifest with carbon dioxide embolisms are as follows:

  • Cardiac arrest
  • Neurological sequelae (eg motor deficits, cognitive deficits, seizures)
  • Death

Deterrence and Patient Education

Prevention of CO2 embolism targets potential methods of gas entry into circulation during laparoscopic surgery. Correct positioning of the Veress needle should be verified with a negative aspiration of blood before insufflation with a low flow rate and low-pressure setting, or alternative modes of entry and pneumoperitoneum creation should be utilized.[14] Low insufflation pressure during laparoscopic surgery may diminish the pathophysiological changes. After properly placing the trocars, patients should be placed in the Trendelenburg position.[2] Positive end-expiratory pressure (PEEP) of 5 cm H2O may be used intraoperatively to decrease atelectasis caused by pneumoperitoneum.[17]

Enhancing Healthcare Team Outcomes

Minimally invasive laparoscopic procedures have increased in popularity and, in many cases, have superseded traditionally open surgical procedures. Patients should be assessed via preoperative medical evaluation to determine cardiopulmonary risks and anticipate possible complications. Additionally, it is important to foster a “speak up” culture where all interprofessional team members feel comfortable communicating potential concerns related to patient safety.[18]

An alternative to using the Veress needle technique is applying the Hasson technique to establish pneumoperitoneum.[4] In a systematic review, gas embolism was 0.001% (7/489000 cases) with the Veress needle, while no embolisms were reported in 12444 cases using the Hasson technique.[4]

Further, reducing the insufflation pressure can reduce the risk of CO2 embolism. In a randomized trial of 498 patients undergoing endoscopic saphenous vein harvesting, the incidence of CO2 embolisms was significantly higher in the high insufflation pressure group (15 mg Hg CO2) than in the low insufflation group (12 mg Hg CO2).[11]

The healthcare team must coordinate to prevent CO2 embolism by preventing gas entry into circulation during laparoscopic surgery. Correct positioning of the Veress needle should be verified with a negative aspiration of blood before insufflation with a low flow rate and low-pressure setting, or alternative modes of entry and pneumoperitoneum creation should be utilized. Operative specialty-trained nurses assisting in surgery can identify issues and call the surgeon's attention. Perioperative nurses monitor patients and provide feedback to the team.

References


[1]

Naude GP, Bongard FS. Helium insufflation in laparoscopic surgery. Endoscopic surgery and allied technologies. 1995 Aug:3(4):183-6     [PubMed PMID: 8846034]


[2]

Gutt CN, Oniu T, Mehrabi A, Schemmer P, Kashfi A, Kraus T, Büchler MW. Circulatory and respiratory complications of carbon dioxide insufflation. Digestive surgery. 2004:21(2):95-105     [PubMed PMID: 15010588]

Level 3 (low-level) evidence

[3]

McDonald NJ, Lavelle P, Gallacher WN, Harpin RP. Use of the oxygen cost of breathing as an index of weaning ability from mechanical ventilation. Intensive care medicine. 1988:14(1):50-4     [PubMed PMID: 3343430]


[4]

Bonjer HJ,Hazebroek EJ,Kazemier G,Giuffrida MC,Meijer WS,Lange JF, Open versus closed establishment of pneumoperitoneum in laparoscopic surgery. The British journal of surgery. 1997 May;     [PubMed PMID: 9171741]


[5]

Fahy BG, Hasnain JU, Flowers JL, Plotkin JS, Odonkor P, Ferguson MK. Transesophageal echocardiographic detection of gas embolism and cardiac valvular dysfunction during laparoscopic nephrectomy. Anesthesia and analgesia. 1999 Mar:88(3):500-4     [PubMed PMID: 10071994]


[6]

Kim CS, Kim JY, Kwon JY, Choi SH, Na S, An J, Kim KJ. Venous air embolism during total laparoscopic hysterectomy: comparison to total abdominal hysterectomy. Anesthesiology. 2009 Jul:111(1):50-4. doi: 10.1097/ALN.0b013e3181a05ac7. Epub     [PubMed PMID: 19512874]


[7]

Cottin V, Delafosse B, Viale JP. Gas embolism during laparoscopy: a report of seven cases in patients with previous abdominal surgical history. Surgical endoscopy. 1996 Feb:10(2):166-9     [PubMed PMID: 8932621]

Level 3 (low-level) evidence

[8]

Mayer KL,Ho HS,Mathiesen KA,Wolfe BM, Cardiopulmonary responses to experimental venous carbon dioxide embolism. Surgical endoscopy. 1998 Aug;     [PubMed PMID: 9685535]

Level 3 (low-level) evidence

[9]

Yau P, Watson DI, Lafullarde T, Jamieson GG. Experimental study of effect of embolism of different laparoscopy insufflation gases. Journal of laparoendoscopic & advanced surgical techniques. Part A. 2000 Aug:10(4):211-6     [PubMed PMID: 10997844]

Level 3 (low-level) evidence

[10]

Couture P, Boudreault D, Derouin M, Allard M, Lepage Y, Girard D, Blaise G. Venous carbon dioxide embolism in pigs: an evaluation of end-tidal carbon dioxide, transesophageal echocardiography, pulmonary artery pressure, and precordial auscultation as monitoring modalities. Anesthesia and analgesia. 1994 Nov:79(5):867-73     [PubMed PMID: 7978402]

Level 3 (low-level) evidence

[11]

Chiu KM, Lin TY, Wang MJ, Chu SH. Reduction of carbon dioxide embolism for endoscopic saphenous vein harvesting. The Annals of thoracic surgery. 2006 May:81(5):1697-9     [PubMed PMID: 16631658]

Level 1 (high-level) evidence

[12]

Lin TY,Chiu KM,Wang MJ,Chu SH, Carbon dioxide embolism during endoscopic saphenous vein harvesting in coronary artery bypass surgery. The Journal of thoracic and cardiovascular surgery. 2003 Dec;     [PubMed PMID: 14688720]


[13]

Mann C, Boccara G, Fabre JM, Grevy V, Colson P. The detection of carbon dioxide embolism during laparoscopy in pigs: a comparison of transesophageal Doppler and end-tidal carbon dioxide monitoring. Acta anaesthesiologica Scandinavica. 1997 Feb:41(2):281-6     [PubMed PMID: 9062614]

Level 3 (low-level) evidence

[14]

Daugherty A, Woodward B. Carbachol and dibutyryl cyclic GMP on the vulnerability to ventricular fibrillation in rat isolated hearts. British journal of pharmacology. 1985 Jul:85(3):621-7     [PubMed PMID: 2992667]

Level 3 (low-level) evidence

[15]

Fong J, Gadalla F, Druzin M. Venous emboli occurring caesarean section: the effect of patient position. Canadian journal of anaesthesia = Journal canadien d'anesthesie. 1991 Mar:38(2):191-5     [PubMed PMID: 2021988]


[16]

Nichols SL,Tompkins BM,Henderson PA, Probable carbon dioxide embolism during laparoscopy; case report. Wisconsin medical journal. 1981 Mar;     [PubMed PMID: 6456601]

Level 3 (low-level) evidence

[17]

Kim JY, Shin CS, Kim HS, Jung WS, Kwak HJ. Positive end-expiratory pressure in pressure-controlled ventilation improves ventilatory and oxygenation parameters during laparoscopic cholecystectomy. Surgical endoscopy. 2010 May:24(5):1099-103. doi: 10.1007/s00464-009-0734-6. Epub 2009 Nov 14     [PubMed PMID: 19915912]

Level 1 (high-level) evidence

[18]

Schwappach D, Sendlhofer G. Speaking Up about Patient Safety in Perioperative Care: Differences between Academic and Nonacademic Hospitals in Austria and Switzerland. Journal of investigative surgery : the official journal of the Academy of Surgical Research. 2020 Sep:33(8):730-738. doi: 10.1080/08941939.2018.1554016. Epub 2019 Jan 15     [PubMed PMID: 30644786]