Diabetic Foot Infections

Article Author:
Heather Murphy-Lavoie
Article Editor:
Shikha Singh
6/4/2019 7:34:12 PM
PubMed Link:
Diabetic Foot Infections


There are approximately 29 million people with diabetes in the United States, and approximately 25% of people older the age of 65 have diabetes. The incidence of diabetes worldwide is projected to increase by 55% over the next 20 years, so this problem is only going to get worse. Approximately 75% of diabetic neuropathies is distal symmetric polyneuropathy (DSP)[1]. Once peripheral neuropathy develops the annual incidence of ulcer formation increases from less than one percent to greater than 7%. The three-year mortality for people with diabetes increases from 13% to 28% with an ulcer. Osteomyelitis occurs in 15% of ulcers, and 15% of those will go on to require amputation[2]. In fact, approximately 60% of patients undergoing lower extremity amputation have diabetic foot ulcers as the underlying cause. Following a lower extremity amputation, the five-year mortality jumps to 60%. Diabetic foot ulcers are precursors to amputation and mortality, and therefore, every effort should be made to prevent them.


There are multiple forces at work in the development of diabetic foot ulcers[3]. The four main branches of pathophysiology include neuropathy, ischemia, nutritional dysfunction, and infection. A well-perfused foot is more resistant to ulceration and infection than one that is suffering from the peripheral vascular disease. In people with diabetes, this is further complicated by a diminished effectiveness of perfusion caused by autonomic neuropathy where there is less recruitment of capillaries and shunting of blood around capillary beds. Neuropathy also causes not only a diminished sensation but a loss of sweat and oil glands that leads to dry cracking skin and a diminished neuroinflammatory response to noxious stimuli[1]. Additionally, glycosylation of tendons leads to stiffening and shortening that can cause foot deformities (claw toes, hammer toes) and Achille's tendon stiffening which increases pressure on the forefoot[4].


Diabetic foot infections are common infections in patients with diabetes. The incidence of diabetic foot infections is more common in elderly patients with co-morbidities. Males and females are affected equally.

Mortality is rare, except in unusual circumstances. The mortality risk is higher in patients with chronic osteomyelitis, those with acute necrotizing soft-tissue infections, and in those with additional underlying problems affecting the immune system.


Once a diabetic foot ulcer forms it is a race against the clock to heal it before it gets infected. Like most skin and soft tissue infections, these start out as Staphylococcal or Streptococcal infections, but as the depth and severity of the infection increases, they quickly become polymicrobial infections with gram negative and anaerobic organisms[5]. People with diabetes have a diminished capacity to fight infection and have nutritional deficits that make healing a challenge.

History and Physical

When taking a history from a person with diabetes, it is important to screen for the risk factors of diabetic foot ulcers (history of an ulcer, sensory neuropathy, abnormal pulses, or peripheral vascular disease, foot deformity, age over 65, poor glycemic control, end-organ damage, and renal disease). Patients known to be at risk should be wearing offloading diabetic footwear to protect their feet at all times. Once an ulcer develops it is important to know what they are wearing on their feet, and any treatment strategies tried previously. The physical exam should include a thorough screening for peripheral vascular disease and sensory neuropathy as well as an evaluation of the depth and severity of the ulcer.


Laboratory studies can be helpful in identifying malnutrition (pre-albumin), renal disease (BUN and creatinine), poor glycemic control (Hemoglobin A1C) and screening for osteomyelitis (CRP > 10 and ESR > 40). When cultures are taken, it is important to get a deep tissue culture rather than a superficial swab because most wounds have superficial colonization which is not necessarily representative of the most important infectious cause[6]. Bone cultures are recommended to guide antibiotic selection in cases of osteomyelitis. Plain radiographs should be taken of all diabetic foot ulcers to screen for retained foreign bodies, osteomyelitis, and subcutaneous gas. X-ray findings of osteomyelitis take four to six weeks to develop, therefore, if there is a high index of suspicion of osteomyelitis, an MRI is helpful in making this diagnosis early. CT scans are useful for identifying deep space abscesses when MRI is not readily available. Transcutaneous oxygen measurements (TCOM) can be helpful in risk stratifying these patients. A transcutaneous oxygen tension of at least 40 mmHg is needed for normal wound healing. Most diabetics will have levels lower than this, and hyperbaric oxygen therapy and correction of peripheral vascular disease can increase oxygenation. Transcutaneous oxygen measurements can also be used to predict who will be most likely to benefit from hyperbaric oxygen therapy and who needs critical reperfusion. A transcutaneous oximetry measurement (TCOM) of greater than 200 mmHg under hyperbaric conditions indicates a greater likelihood of healing with a course of hyperbaric oxygen therapy with a sensitivity of 80% and positive predictive value of 88%[7].

Treatment / Management

Management strategies for wound care should include maintaining a moist wound environment, treating and preventing infection, off loading the affected area, debridement of necrotic tissue and biofilm, maximization of perfusion, nutrition and oxygen delivery. Offloading strategies include debridement of calluses, padding, orthotics, therapeutic foot wear, walking boots, total contact casts, and Achille's tendon lengthening[8][9]. The presence of a callous increases the likelihood of ulcer formation 11-fold and debriding the callous lowers the pressure exerted by 26%. The combination of Achille's tendon lengthening and total contact casts have the highest success of healing forefoot ulcers[10][11]. Superficial wound infections can be treated with topical antimicrobials, however, once cellulitis is present systemic antibiotics will be required. Even mild peripheral vascular disease should be corrected in these patients to optimize their likelihood of healing. Hyperbaric oxygen therapy can prevent amputations in patients with Wagner grade 3 or higher ulcers with a number needed to treat of four[12]. Hyperbaric oxygen does this through a variety of mechanisms including increased oxygen delivery to ischemic/hypoxic tissues, enhanced white blood cell mediated bacterial killing, angiogenesis, accelerated collagen synthesis and fibroblast growth, and decreased edema. Nine randomized controlled trials show the effectiveness of hyperbaric oxygen therapy in these patients in speeding healing, preventing amputations and improved transcutaneous oxygen measurements. Hyperbaric oxygen increases the likelihood of wound healing with an odds ratio of 10. A standard treatment course is 30 to 40 treatments at 2.4 ATA these are given once or twice daily[12].

Pearls and Other Issues

In summary, diabetic foot ulcers are precursors to amputations and require aggressive treatment. Patients should be screened for risk factors and referred for diabetic footwear when risk is identified. Staphylococcus aureus is the most important pathogen in diabetic foot infections, but as the depth and severity increase, these become polymicrobial. Surgery is indicated for the reversible peripheral vascular disease. Callouses should be debrided, and a moist wound healing environment should be maintained. Achille's tendon lengthening combined with total contact casting speeds healing and decreases the likelihood of recurrence and hyperbaric oxygen therapy is indicated in selected cases (Wagner grade 3 or higher) to speed healing and prevent amputation[13].

Enhancing Healthcare Team Outcomes

Diabetic foot ulcers have challenging and serious implications if not adequately managed. It is vital to follow a multidisciplinary approach when treating diabetic patients who present with foot ulcers given their immunocompromised status and low threshold to fight superimposed infections and capacity to heal adequately. Comprehensive history and examination is essential in order to adequately formulate a treatment plan for patients with Diabetic foot ulcers. They should be managed by a team of healthcare professionals including Primary medical doctor, endocrinologist, podiatry, vascular surgery, infectious disease specialist, wound care nurse and pharmacist. The team should work closely in achieving optimal glycemic control and titrating diabetic regimen along with multidisciplinary approach for adequate debridement, proper local wound care, redistribution of pressure on the ulcer by mechanical offloading, and control of infection and ischemia. The following approach should be followed in the management of diabetic foot ulcers:

  • Primary medical doctor/endocrinologist should assess the wound and adequate referral to Podiatry should be provided. Diabetic foot ulcer should be classified upon initial presentation and monitored for any signs of worsening on regular follow-ups.
  • Vascular surgery should be consulted for any evidence of underlying PAD ( Peripheral arterial disease) and signs of limb ischemia. Early revascularization is the key. Revascularization should also be performed in patients with a nonhealing ulcer and any degree of limb ischemia.
  • Surgical (sharp) debridement versus utilization of autolytic debridement with hydrogels by wound care specialist should be performed as warranted.
  • Infectious disease specialist opionion should be sought for the management of wound infections.

There is also clear evidence about the effectiveness of hyperbaric oxygen therapy in the patients with Wagner Grade 3 ulcers in speeding healing, preventing amputations and improved transcutaneous oxygen measurement [12]( Level 1)


[1] Bansal V,Kalita J,Misra UK, Diabetic neuropathy. Postgraduate medical journal. 2006 Feb     [PubMed PMID: 16461471]
[2] Ramsey SD,Newton K,Blough D,McCulloch DK,Sandhu N,Reiber GE,Wagner EH, Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes care. 1999 Mar     [PubMed PMID: 10097914]
[3] Boulton AJ,Armstrong DG,Albert SF,Frykberg RG,Hellman R,Kirkman MS,Lavery LA,Lemaster JW,Mills JL Sr,Mueller MJ,Sheehan P,Wukich DK, Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes care. 2008 Aug     [PubMed PMID: 18663232]
[4] Trieb K, The Charcot foot: pathophysiology, diagnosis and classification. The bone & joint journal. 2016 Sep     [PubMed PMID: 27587513]
[5] Raspovic KM,Wukich DK, Self-reported quality of life and diabetic foot infections. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 2014 Nov-Dec     [PubMed PMID: 25128305]
[6] Wheat LJ,Allen SD,Henry M,Kernek CB,Siders JA,Kuebler T,Fineberg N,Norton J, Diabetic foot infections. Bacteriologic analysis. Archives of internal medicine. 1986 Oct     [PubMed PMID: 3767539]
[7] Strauss MB,Bryant BJ,Hart GB, Transcutaneous oxygen measurements under hyperbaric oxygen conditions as a predictor for healing of problem wounds. Foot & ankle international. 2002 Oct     [PubMed PMID: 12398146]
[8] Elraiyah T,Prutsky G,Domecq JP,Tsapas A,Nabhan M,Frykberg RG,Firwana B,Hasan R,Prokop LJ,Murad MH, A systematic review and meta-analysis of off-loading methods for diabetic foot ulcers. Journal of vascular surgery. 2016 Feb     [PubMed PMID: 26804369]
[9] de Oliveira AL,Moore Z, Treatment of the diabetic foot by offloading: a systematic review. Journal of wound care. 2015 Dec     [PubMed PMID: 26654736]
[10] Liden B, Total Contact Cast System to Heal Diabetic Foot Ulcers. Surgical technology international. 2017 Jul 25     [PubMed PMID: 28696493]
[11] Laborde JM, Treatment of diabetic foot ulcers with tendon lengthening. American family physician. 2009 Dec 15     [PubMed PMID: 20000296]
[12] Huang ET,Mansouri J,Murad MH,Joseph WS,Strauss MB,Tettelbach W,Worth ER, A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc. 2015 May-Jun     [PubMed PMID: 26152105]
[13]     [PubMed PMID: 28704149]