Rinne Test

Article Author:
Erwin Kong
Article Editor:
James Fowler
Updated:
6/1/2019 6:48:57 PM
PubMed Link:
Rinne Test

Introduction

The Rinne test used to evaluate the loss of hearing in one ear. The Rinne test differentiates sounds transmitted by air conduction from those transmitted through the mastoid by bone conduction. It quick screens for the conductive hearing loss. A Rinne test should be done with a Weber test to detect a sensorineural hearing loss.[1][2][3]

Over the years, many types of tuning forks tests had been developed to assess hearing loss, but today only two have withstood the test of time: Rinne and Weber. Both these tests are now routinely taught at the medical school level and performed regularly to assess patients with hearing problems. The Rinne test is frequently recommended when one suspects conductive hearing loss. In some patients with otosclerosis, the Rinne test is performed to determine if the patient is eligible for stapes surgery.[4][5][6]

Anatomy

The external ear collects sound vibrations from the air and focuses these sounds onto the tympanic membrane. Vibrations are transmitted through the middle ear by the ossicular chain (malleus, incus, and stapes). The stapes transmits these vibrations to the cochlea through the oval window (fenestra ovalis). The sound may also be transmitted through the bones of the skull to the cochlea.

The hair cells in the cochlea convert the physical vibrations into action potentials that are transmitted via the nerves in the vestibulocochlear (auditory) nerve to the brainstem for further processing.

Deafness may occur due to interruption at any point along this pathway.

The Rinne test is conducted by placing a tuning fork on the mastoid bone.

  • Air conduction uses the apparatus of the ear (eardrum, pinna, and ossicles) to amplify and direct the sound.
  • Bone conduction allows the vibration sound to be transmitted to the inner ear. There is reduced volume transmitted by to the bones of the skull to the other ear.

Indications

Before performing the Rinne test, it is important to know that in normal hearing, one will have air conduction that is greater than bone conduction. This means that the individual will be able to hear the tuning form when it is placed near the outer ear, even after that are no longer able to hear it when held against the mastoid.

Evaluation of hearing the loss in one ear.

Equipment

Use a 512 Hz tuning fork. Please avoid use 128 Hz or 256 Hz tuning fork, as these are used to assess vibration sensation in neurological examinations.

Preparation

The room should be reasonably quiet.

Technique

Test Bone Conduction

  1. Place the vibrating tuning fork on the mastoid process.
  2. The patient should be asked to cover the opposite ear with their hand.
  3. The patient should report when the sound can no longer be heard
  4. Then move the vibrating tuning fork over the ear canal to the ear without touching it.
  5. The patient should indicate when air conduction of the sound can no longer be heard.

Normal finding: Air conduction should be better than bone conduction, and air conduction should persist twice as long as bone, this is a "positive test."

Abnormal: Bone conduction is better than air conduction, this suggests conductive hearing loss and is referred to as "negative test."

Complications

The Weber test is the complement for the Rinne test. They are screening tests and do not replace formal audiometry.

Clinical Significance

The tuning fork will be perceived as being louder when placed at the external auditory meatus.

  • Rinne Positive: The patient is positive on that side (the ossicular chain is doing what it should be doing, acting as an amplifier). If the bone conduction through the mastoid process is heard louder than through the air, then the patient is Rinne negative. This is always abnormal.
  • If the patient has negative or abnormal Rinne negative, air vibrations are not being transmitted across the external auditory canal, the tympanic membrane, the ossicular chain, or the oval window.

Causes in the external auditory canal:

  • Wax in the external canal
  • Otitis externa or outer ear canal infection
  • Foreign body in ear canal

Causes due to the drum:

  • Perforation of the drum due to trauma or infection

Causes in the middle ear:

  • Infection (acute otitis media) in the middle ear
  • Serous otitis media (glue ear) can result from repeated episodes of acute otitis media.

Causes at the oval window:

  • Otosclerosis results in the failure of transmission of sound from the stapes through the oval window due to abnormal bone growth. 

A patient with profound sensorineural deafness may have a false negative Rinne. With complete loss of innervation to that ear, the patient will not hear anything from the tuning fork on the mastoid or near the canal. The patient sound transmission through their skull to the other ear on the other side and they may not be able to identify in which ear they hear the sound.

It seems that bone conduction is better than air conduction, but the ear is nonfunctional.

The way to determine the difference between a true and a false Rinne negative test is to perform Weber test.

False Negative Rinne test

Sometimes the Rinne test may be falsely negative in the following situations:

Total unilateral sensorineural hearing loss. For example, if the left ear is completely dead, on testing, the bone conduction on the left, the sound waves travel to the good right ear, and the sounds are louder when the tuning fork is held next to the external auditory meatus on the side being tested (left). The patient, in this case, will state that bone conduction is louder than air conduction, giving a falsely negative Rinne test.

Enhancing Healthcare Team Outcomes

Limitations of the Rinne test

It is important to remember that the Rinne test is only a screening test and does not replace a formal audiometry test. In addition, the validity of the Rinne test as a screening test is often questioned. The test is not sensitive in differentiating conductive and sensorineural loss causes of total sensorineural or severe unilateral hearing loss. False negatives are common in such situations. In any situation where there is a question about the Rinne test, the patient must be referred to an ear, nose, and throat (ENT) surgeon for formal audiometry.

The other important fact about the Rinne test is that the technique is not uniform. The orientation of the tuning fork and its exact placement vary from individual to individual. All physicians who perform the Rinne test must pay attention to the orientation of the tines of the tuning fork with respect to the long axis of the external auditory canal when testing for air conduction.


References

[1] Wahid NWB,Attia M, Weber Test 2019 Jan;     [PubMed PMID: 30252391]
[2] Tajnin R,Chaklader MA,Yasmin N,Hossain MD,Ahmad SA,Faruquee MH, Status of Hearing Impairment among Handloom Workers in Tangail District of Bangladesh. Mymensingh medical journal : MMJ. 2018 Jul;     [PubMed PMID: 30141448]
[3] Kelly EA,Li B,Adams ME, Diagnostic Accuracy of Tuning Fork Tests for Hearing Loss: A Systematic Review. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2018 Aug;     [PubMed PMID: 29661046]
[4] Butskiy O,Ng D,Hodgson M,Nunez DA, Rinne test: does the tuning fork position affect the sound amplitude at the ear? Journal of otolaryngology - head     [PubMed PMID: 27013057]
[5] Turner JS JR., The Ear and Auditory System 1990;     [PubMed PMID: 21250075]
[6] Bagai A,Thavendiranathan P,Detsky AS, Does this patient have hearing impairment? JAMA. 2006 Jan 25;     [PubMed PMID: 16434632]